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Centimeter-Wave Microstrip Phase Shifter
on a Ferrite–Dielectric Substrate

SYLVAIN BOLIOLI, HAFED BENZINA, HENRI BAUDRAND, MEMBER, IEEE, AND B. CHAN

Abstract —The propagation characteristics and fields of a microstrip

transmission fine on a composite ferrite-dielectric snbstrate are studied

with a focus on its phase-shifting behavior. Two different methods are used
for theoretical analysis, namely the least-squares boundaty residual

(LSBR), which offers high precision, and a variational method in the

spectral domain, which requires a low computing time. Quasi-TEM propa-

gation is assumed in both cases. The results obtained are compared with

the experimental data, and good agreement is observed. Besides its easy

design, this phase shifter presents the advantage of having a good peak

power handling capacity as well as a low production cost because of the

ease with which it can be integrated in planar systems.

I. INTRODUCTION

T HE DEVELOPMENT of phased-array antennas with

two-plane electronic scanning in the centimeter-wave
range depends largely on the miniaturization of the termi-

nal phase shifters. In this paper, we propose the analysis of

a composite microstrip dielectric–ferrite structure which

fits well to such elements (Fig. 1). The dielectric layer

reduces interaction between the electromagnetic wave and

the ferrite beneath the inicrostrip conductor, the region

where the magnetic field is the most important. It pro-

duces a better peak power handling capacity as well as a

decrease in losses, but also entails a reduction of phase

shifter efficiency.
The phase shifter will be described by its characteristic

impedance and its maximum phase shift per unit length.

The ferrite is magnetized longitudinally along the propaga-

tion axis 0=, thereby ensuring system reciprocity.

The quasi-TEM assumption, which we adopt here, im-

plies small transverse dimensions in relation to the free-

space wavelength; moreover, the propagating media are

assumed to be lossless.

Consequently, and according to Green and Rado [1]-[4],

the permeability tensor is of the form

.[ 1P –jk O
~=pO. jk P o

0 0 p=

where p, k, and p= are real quantities.
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Fig. 1. Microstnp transmission hne over a composite dielectric–ferrite
substrate.

For the completely demagnetized state, P& the expres-

sion of p in this case is given by Schloemann’s formula,

calculated for a cylindrical sample:

where ~ = frequency, y = gyromagnetic constant (y= 2.8

MHz/Oe), and 4nM$ = saturation magnetization.

In the partially magnetized state, Green and Rado give

experimental expressions for p, k, and I.L=:

J

P,= pd [1 – (4~M/’’4wM, )]2’2

where 4vM is the magnetization.

Based on these assumptions, two analysis methods are

presented here, namely the variational approach in the

spectral domain, developed by Yamashita [5] and Mittra

[6], [7] for multilayer dielectric media. and the least-squares

boundary residual (LSBR) method [8].

In the first, the characteristic impedance and the propa-

gation constant are expressed in terms of the effective

dielectric and magnetic constants. The ferrite is considered

to be an isotropic medium with a scalar permeability p,

derived from the tensor. The method consists in a varia-

tional calculation of line capacitance in the spectral do-

main. These’ approximations lead to a very short computa-
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Fig. 2. Definition of effective electric and magnetic constants.

tion time (about 30 seconds on a personal computer) and

fit well to a fast design of the device.

In the LSBR method, however, the ferrite anisotropy is

conserved and the results are more accurate than those

obtained by the variational one. Nevertheless, its numeri-

cal implementation is slightly more difficult and the com-

putation is much longer. These two methods appear to be

complementary.

H. VARIATIONAL METHOD IN THE SPECTRAL DOMAIN

Let us consider the structure of Fig. 1, where the thick-

ness of substrates and the strip width are small compared

to the free-space wavelength; furthermore, the strip thick-

ness is assumed to be zero. It is equivalent to a fictional

transmission line containing a uniform medium of perme-

ability peff and permittivity c.ff (Fig. 2). ‘Therefore the
propagation can be closely described by a plane wave in

the TEM mode. Hence, we have transverse fields E and B,

and the expression of the permeability tensor in the case of

longitudinal magnetization leads to transverse H (this is

not valid when the magnetization of the ferrite is perpen-

dicular to the propagation axis).
According to these assumptions, the tensor can be re-

duced to the scalar transverse permeability:

P2 – kz
pe=pT=—

P“
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Fig. 3. Definition of effective permeability.

The characteristic impedance and the propagaticmt con-

stant can therefore be determined by means of the follow-

ing formulas:

where C is the line capacitance per unit length, and v is

the velocity of light. Thus, the transmission line is de-

scribed by the capacitance C and by the effective permit-

tivity ~eff and permeability P.ff.

If CO is the capacitance when the substrates are replaced

by air, the effective dielectric constant is given by tlhe ratio

C/CO. Similarly, the effective permeability can be obtained

by considering the duality of t and I/p in Maxwell’s

equations as shown by Pucel and Masse [9]. First, the

capacitance Cl of a fictional transmission line is computed

by replacing ~ with l/p~. The corresponding effective

permeability is given by the ratio CO/Cl (Fig. 3). Thus the

determination of Z, and ~ is reduced to the computation

of the different capacitances CO, C, and Cl.

The variational expression of the line capacitance is

given by [5], [10]

+=+ J:mmv(o>Y)”P(Y)”dY
where p(y) is the surface charge density over the conduc-

tor, V( x, y) is the transverse potential function, and Q is

the total strip charge per unit length.
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By using Parseval’s formula, the above equation is trans-

posed into the spectral domain:

:=j&:”w7P)+-(P)4J
m

where V(O, p) and P(p) are the Fourier transforms of

V(O, y) and p ( y), respectively. V(O, p) can be expanded

by using the Fourier transform of the Green’s function

over the conductor, which gives

6 is obtained by solving Poisson’s equation under the

quasi-TEM assumption, transposed into the spectral do-

main, and by solving the electric field continuity condi-

tions at the different interfaces. Its expression over the

strip is given in the Appendix.

On the other hand, in order to calculate the charge

density, p, we can assume that the conductor potential is

constant and equal to V(O.This leads to the following

relationship:

V,= P’(O, y) = ~onductorG(y,y’)p(y’) dy’

forlyl < W/2.

This is a Fredholm equation of the first kind where

P ( Y’) is the unknown, and the point-matching technique is
applied for its resolution. The charge density p is decom-

posed into 2N rectangular basis functions (see Fig. 4):

[

R fory, -l<lyl<yl
P(Y)= o’ for Iyl > w/2.

The convolution by the Green’s function being a linear

operator, the expression of the potential function on the

strip conductor in the spectral domain becomes

In this way, a linear system is obtained where the R,’s

can be deduced from the V(O.It suffices then to substitute

them into the capacitance expression.

III. LEAST-SQUARES BOUNDARY RESIDUAL METHOD

The LSBR method has been successfully applied to

certain electromagnetic problems, in particular those which

involve the wave propagation and radiation in planar

structures [11], [12]. The main difficulty is choosing a

numerical technique that will allow the optimization of

factors such as the computation time and memory storage.

Usually, according to the different variants of this

method, a reduced computer memory storage leads to a

longer computation time and vice versa. In spite of its

tedious numerical implementation, the LSBR method

seems to be quite satisfying as far as accuracy is con-

cerned.

RI+1
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Fig, 4. Rectangular basis function of p.

Here, we have applied this method to analyze a structure

through the use of one of its variants, which consists in

changing the basic functions [8].

The quasi-TEM assumption allows the propagation

characterization by calculating only the capacitance and

the inductance of the structure’s cross section. The main

idea consists in expanding the electrostatic and magneto-

static potentials V and U into harmonics; then the electric

and magnetic fields E and H are respectively derived from

them.

Once the field expressions are obtained, the boundary

conditions at the interfaces are applied, and on the con-

ductor interface we can obtain the following expressions.

For the electrostatic case,

<(n. [D2(0, y)– D1(O, y)])+ Wm(n. E(O, y))=0.

For the magnetostatic case,

Jfqn. [li,(o,y )-q(o, y)])+ wm(n.qo,y))=oo

Here

(

~ = 1 along the conductor width
m

O elsewhere

~=l– Jj-m

and

De= ceE~ B,= ~,He, e=l,2,3.

These equations can be rewritten in the following forms:

<P(Y) +J?m”EY(y)=O electrostatic case

w,j(y)+ ~wl.llx(y)=o magnetostatic case

where J“(y ) is the surface current density.
We now put them in the general form

Jff(y)+JfmA(y)=o.

The truncation of the two series functions

leads to a functional +(y), written as
.f(.Y)and ~b)

O(Y) =J’Y(Y)+JK7(.Y).

The LSBR method consists then in minimizing the follow-

ing expression:

(@( Y)l$$(Y)) =J_+b%’)”+(Y)dY
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where b is the distance between the two lateral electric

walls. It can be shown that ~(y) and A(y) can be ex-

pressed as

A(y) = ‘~mGn(y). ZCn.Yn

with

G.(y) =1/6eJ*by and b = 2n/b.

Before proceeding to the basis function change, it is

interesting to note that the combination of the two previ-

ous equations (electrostatic and magnetostatic cases) yields

Mif(y)+Wm ‘~mlGn(y))&(Gn(Y)lf (Y))=O.

Moreover

tf(y) = o

where ~ is a linear operator and

~ being the identity operator.

If LN denotes the truncated operator up to a finite

number N, the problem will consist in minimizing the

following form:

(f(Y) l&Lvlf(Y))

where the superscript t denotes the adjoint operator.

We have chosen rectangular pulses as the new basis

functions Tp defined only over the conductor, such that

.=/lvti foryp– S/2<y<yP+8/2
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Fig, 5, Shielded structure for the study with the LSBR method.

A. Electrostatic Analysis

The electrostatic potential V is the solution of Laplace’s

equation:

F 1r32 (32
— V=o.

ax= + dyz

The solution is found to be

~=—~

where i =1,2,3 denotes the different media.

The previous general equation can be written as

+m

~ [XmK:+Xi] .Y;Gn(y)=O

with superscript e indicating the electrostatic case. The full

expression of K: is given in the Appendix.

The total charge Q is obtained by integrating the surface

charge density p(y) over the conductor width:

Q=~tripP(Y) ~Y=~trip; Y;Tp(Y)~Y=fi ZY;.
P

‘p \o elsewhere.

Here yp = p. 6, and d = W/number

Then f(y) is rewritten as

f(y) =TP(y)” YP

The potential V can be expressed in terms of the eigenvec-

of basis functions.
tor components as

v= $Xx ‘“”:;s”” ~

HP

The expression to be minimized becomes By having the charge and potential values, the capacitance

(YI.41Y) = ~ ~ ~ ~Y;S:,qK:
is deduced immediately:

qmnp C= Q/V.

o(Gm( y) ldfmlGH( y)) K#n,pYp ~ ~agnetostatic Ana@sis

where Si, j = (Gi( y) IL( y)), and A is a definite positive The magnetostatic potential U is the solution of
matrix. Laplace’s equation:

In order to avoid the trivial solution Y= O, we impose

the condition

(YIY) =1. [~++iu’o
The solution is the eigenvector Y corresponding to the The solution is found to be

smallest eigenvalue of A.

Now, we present the different steps in the solution of Ui(x, y) = ‘~~ [C#’Plx+ D~e-lnlx]e~”pY.
our problem concerning the structure of Fig. 5. ~:=—~
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Fig. 6. Cross sections of experimental phase shifters.

The general equation can be written as

where the superscript h indicates the magnetostatic case.

The full expression of K; is given in the Appendix.

Similarly the current 1 is obtained by integrating the

surface charge density j(y) over the conductor width:

The magnetic induction flux rp through the (y, z) plane

between the conductor edge and the lateral wall can be

calculated as

J
h/2

fp= Poz(o> Y) ~Y
w/2

and the inductance L is determined as

L = q/I.

In this way, the propagation constant and the character-

istic impedance are determined by the classical transmis-

sion line equations.

The fields can be calculated at the dielectric–ferrite

interface using the eigenvector components in the new

basis.

IV. APPLICATION TO PHASE SHIFTERS

We present here the experimental results concerning two

phase shifter prototypes, realized by using the following

Thomson/CSF ferrites (Fig. 6(a) and (b)):

4TA4~= (gauss) 1740 2240

— — _ VARIATIONAL METHOD

)

DEMAGNETIZED FERRITE

LSBR METHOD

_..,, _____ VARIATIONAL METHOD

1

MAXIMUM POLARISATION OF THE
_, _. ___ LS6R METHOO

FERRITE

.8L..L _______
10 11 12 GHz

Fig. 7. (a) Normalized propagation constant versus frequency (A230).

(b) Characteristic impedance versus frequency (A230).

A. Propagation Constant and Characteristic Impedance

The two methods have been applied for the design of the

phase shifters, and Figs. 7 and 8 show the excellent agree-

ment between the theoretical results. The maximum differ-

ence between the obtained values is 2 percent for the

characteristic impedance in the case of maximum polariza-

tion, less than 1 percent for that of the demagnetized

structure, and 1 percent for the propagation constant.

The calculation of the microstrip width W corresponding

to a characteristic impedance of 50 Q gives 0.9 mm for the

A230 structure and 0.67 mm for the other one, where the

operating frequency is 10 GHz. Figs. 9(a) and 10(a) illus-

trate the measured SWR in the 8–12 GHz band, where it
is less than 1.2 everywhere (under —20 dB), except below

9 GHz for the A28 phase shifter, where losses appear in

the low magnetic field zone. The polarization induction is

created by a 2000-turn solenoid around the phase shifter.

B. Phase Shift

The diagrams of Figs. 9(b) and 10(b) show the experi-

mental differential phase shift between the polarized and

demagnetized states as a function of the magnetization

(i.e., the current in the solenoid).
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Fig. 8. (a) Normalized propagation constant versus frequency (A28).

(b) Characteristic impedance versus frequency (A28).

The predicted phase shift is calculated for a saturated

ferrite, below the limit where nonlinear phenomena ap-

pear. This state is characterized by the end of the satura-

tion bend yielding a nearly linear ‘curve, and corresponds,

respectively, to 100 rnA and 500 mA through the solenoid

in the A230 and A28 cases. The LSBR method gives

results which are nearer to this definition. However, it is

interesting to note that, in both cases, the theoretical

values are in good agreement with the experimental ones,

around well-defined polarization levels (120 mA and 500

mA for the LSBR method, 230 mA and 800 mtl for the

variational one).

C. Magnetic Field Distribution

[n order to complete the structure characterization, the

IIMlgIM!tiC field distribution has been determined by both

methods for the A230 phase shifter. The variations of the

tangential and normal components of H in the dielectric

and at the ferrite–dielectric interface are presented in Fig.

n(a) and (b). We note that LSBR method gives higher

vallues of H than the variational one.

~B —.
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Fig. 9. Composite line: experimental results (A230).
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Fig. 10. Composite line: experimental results (A28),
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V. CONCLUSION

A variational method in the spectral domain and the

LSBR method have been applied successfully to the analy-

sis of composite ferrite–dielectric microstrip phase shifters.

In each case, the elaborated computer program has under-

gone several validation tests, and very good agreement has

been observed between theoretical and experimental re-

sults. Moreover, the design of such phase shifters is very

easy, and optimizations can be considered, leading to their

use in two-plane electronically scanned antennas.

APPENDIX

1) Expression of the Fourier Transform of the Green’s

Function over the Strip for the Variational Method:

1
G(O, p)=—

pco

2) Expression of K; in Electrostatic Case for LSBR:

SHNth(18nld3)
K;=~.

~tr N+ E,th(lflnld~) [~z+~lth (lPnldl)th (lBnld~)]

with

N= ~zth(l~nldl)+ ~lth(lpnldz)

and

S.= lnl/n.

3) Expression of K: in Magnetostatic Case for LSBR:

SmNth(l~n\d3) N1+Nzth(l~nld2)
K;=

th(l~nldl)+th(l~nld~) “ D1+D2th(lPn/d3) “

N and S. are the same as above. In addition,

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11[

[12]

[13]

[14]

~l=popl~nlz

N1=D1. th(l/3nld1)

N2= (p2–lc2)(~n)2- pok~nlPnlth (l~nldl).
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