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Centimeter-Wave Microstrip Phase Shifter
on a Ferrite—Dielectric Substrate

SYLVAIN BOLIOLI, HAFED BENZINA, HENRI BAUDRAND, MEMBER, IEEE, AND B. CHAN

Abstract —The propagation characteristics and fields of a microstrip
transmission line on a composite ferrite—dielectric substrate are studied
with a focus on its phase-shifting behavior. Two different methods are used
for theoretical analysis, namely the least-squares boundary residual
(LSBR), which offers high precision, and a variational method in the
spectral domain, which requires a low computing time. Quasi-TEM propa-
gation is assumed in both cases. The results obtained are compared with
the experimental data, and good agreement is observed. Besides its easy
design, this phase shifter presents the advantage of having a good peak
power handling capacity as well as a low production cost 'because of the
ease with which it can be integrated in planar systems.

1. INTRODUCTION

HE DEVELOPMENT of phased-array antennas with

two-plane electronic scanning in the centimeter-wave
range depends largely on the miniaturization of the termi-
nal phase shifters. In this paper, we propose the analysis of
a composite microstrip dielectric—ferrite structure which
fits well to such elements (Fig. 1). The dielectric layer
reduces interaction between the electromagnetic wave and
the ferrite beneath the microstrip conductor, the region
where the magnetic field is the most important. It pro-
duces a better peak power handling capacity as well as a
decrease in losses, but also entails a reduction of phase
shifter efficiency.

The phase shifter will be described by its characteristic
impedance and its maximum phase shift per unit length.
The ferrite is magnetized longitudinally along the propaga-
tion axis O,, thereby ensuring system reciprocity.

The quasi-TEM assumption, which we adopt here, im-
plies small transverse dimensions in relation to the free-
space wavelength; moreover, the propagating media are
assumed to be lossless.

Consequently, and according to Green and Rado [1]-[4],
the permeability tensor is of the form

B —Jjk 0
E=py sk w0
0 U

where p, k, and p, are real quantities.
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Fig. 1. Microstrip transmission line over a composite dielectric—ferrite

substrate.

For the completely demagnetized state, p,, the expres-
sion of p in this case is given by Schloemann’s formula,
calculated for a cylindrical sample:

ud=§[1+2-ﬁ—(v4st/f>2]

where [ = frequency, y = gyromagnetic constant (y = 2.8
MHz/Oe), and 47 M, = saturation magnetization.

_ In the partially magnetized state, Green and Rado give
experimental expressions for p, k, and p:

p=p,+(1- ﬂd)(4"7M/4”Ms)3/2
4aM
k= i
f
B, =pa[1—(dnM/4aM,)]”"?

where 47 M is the magnetization.

Based on these assumptions, two analysis methods are
presented here, namely the variational approach in the
spectral domain, developed by Yamashita [5] and Mittra
[6], [7] for multilayer dielectric media. and the least-squares
boundary residual (LSBR) method [8].

In the first, the characteristic impedance and the propa-
gation constant are expressed in terms of the effective
dielectric and magnetic constants. The ferrite is considered
to be an isotropic medium with a scalar permeability p,
derived from the tensor. The method consists in a varia-
tional calculation of line capacitance in the spectral do-
main. These approximations lead to a very short computa-
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Fig. 2. Definition of effective electric and magnetic constants.

tion time (about 30 seconds on a personal computer) and
fit well to a fast design of the device. ,

In the LSBR method, however, the ferrite anisotropy is
conserved and the results are more accurate than those
obtained by the variational one. Nevertheless, its numeri-
cal implementation is slightly more difficult and the com-
putation is much longer. These two methods appear to be
complementary.

II. VARIATIONAL METHOD IN THE SPECTRAL DOMAIN

Let us consider the structure of Fig. 1, where the thick-
ness of substrates-and the strip width are small compared
to the free-space wavelength; furthermore, the strip thick-
ness is assumed to be zero. It is equivalent to a fictional
transmission line containing a uniform medium of perme-
ability p and permittivity e (Fig. 2). Therefore the
propagation can be closely described by a plane wave in
the TEM mode. Hence, we have transverse fields E and B,
and the expression of the permeability tensor in the case of
longitudinal magnetization leads to transverse H (this is
not valid when the magnetization of the ferrite is perpen-
dicular to the propagation axis).

According to these assummptions, the tensor can be re-
duced to the scalar transverse permeability: ’

”2_k2
" .

Pe=Hr=
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Fig. 3. Definition of effective permeability.

The characteristic impedance and the propagatidn con-
stant can therefore be determined by means of the follow-

ing formulas:
Z, = \/ETH s
v-C

Veeff “Pete

,B=277-f.————v

where C is the line capacitance per unit length, and v is
the velocity of light. Thus, the transmission line is de-
scribed by the capacitance C and by the effective permit-
tivity €., and permeability pog.

If C, is the capacitance when the substrates are replaced
by air, the effective dielectric constant is given by the ratio
C/C,. Similarly, the effective permeability can be obtained
by considering the duality of ¢ and 1/p in Maxwell’s
equations as shown by Pucel and Masse [9]. First, the
capacitance C, of a fictional transmission line is computed
by replacing € with 1/p,. The corresponding effective
permeability is given by the ratio C,/C, (Fig. 3). Thus the
determination of Z, and B is reduced to the computation
of the different capacitances C,, C, and C,.

The variational expression of the line capacitance is

given by [5], [10]
1 1 + o0
E*“:Ef_ V(0,5)0(y)-dy

where p(y) is the surface charge density over the conduc-
tor, V(x, y) is the transverse potential function, and Q is
the total strip charge per unit length.
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By using Parseval’s formula, the above equation is trans-
posed into the spectral domain:

1 1 +ooI7 0 . y
EﬁszZf_w (0,p)-6(p)dp
where V(0, p) and p(p) are the Fourier transforms of
V(0,y) and p(y), respectively. V(0, p) can be expanded
by using the Fourier transform of the Green’s function
over the conductor, which gives

1 1

C 27Q°

[ 607 (p) .

G is obtained by solving Poisson’s equation under the
quasi-TEM assumption, transposed into the spectral do-
main, and by solving the electric field continuity condi-
tions at the different interfaces. Its expression over the
strip is given in the Appendix.

On the other hand, in order to calculate the charge
density, p, we can assume that the conductor potential is
constant and equal to V. This leads to the following
relationship:

Vo=7(0.5) = [ G(y.y)e(y) &’

conductor

for|y| <W/2.

This is a Fredholm equation of the first kind where
p(y’) is the unknown, and the point-matching technique is
applied for its resolution. The charge density p is decom-
posed into 2N rectangular basis functions (see Fig. 4):

Rl foryt—1<ly|<yz
p(y)=
0 for |y|>w/2.

The convolution by the Green’s function being a linear
operator, the expression of the potential function on the
strip conductor in the spectral domain becomes

+ ~
I/O:f— °°(;(0,p).e/py,5(p) dp  fori=1.2.-.N.

In this way, a linear system is obtained where the R,’s
can be deduced from the V. It suffices then to substitute
them into the capacitance expression.

ITII. LEAST-SQUARES BOUNDARY RESIDUAL METHOD

The LSBR method has been successfully applied to
certain electromagnetic problems, in particular those which
involve the wave propagation and radiation in planar
structures [11], [12]. The main difficulty is choosing a
numerical technique that will allow the optimization of
factors such as the computation time and memory storage.

Usually, according to the different variants of this
method, a reduced computer memory storage leads to a
longer computation time and vice versa. In spite of its
tedious numerical implementation, the LSBR method
seems to be quite satisfying as far as accuracy is con-
cerned.

Ay

—-w/2 Yig Y, g W2 y

Fig. 4. Rectangular basis function of p.

Here, we have applied this method to analyze a structure
through the use of one of its variants, which consists in
changing the basic functions [8].

The quasi-TEM assumption allows the propagation
characterization by calculating only the capacitance and
the inductance of the structure’s cross section. The main
idea consists in expanding the electrostatic and magneto-
static potentials ¥ and U into harmonics; then the electric
and magnetic fields E and H are respectively derived from
them.

Once the field expressions are obtained, the boundary
conditions at the interfaces are applied, and on the con-
ductor interface we can obtain the following expressions.
For the electrostatic case,

./V;(}’l' [DZ(O’ y)_ D1(07 y)])+‘/Vm(n'E(07 y)) =0.
For the magnetostatic case,
Hi(n-[H,(0, y) = Hy(0, p)]) + A, (n-B(0, y)) = 0.

Here

= { 1 along the conductor width
" 10 elsewhere
=1- 4,
and
D,=¢,E, B,=p,H, e=1,2,3.

These equations can be rewritten in the following forms:
N (y)+ A, E(y)=0
N () + A, B(y)=0

where j(y) is the surface current density.
We now put them in the general form

N f(y)+H,,4(y) =0.

The truncation of the two series functions f(y) and A(y)
leads to a functional ¢(y), written as

o(¥) = f(y)+A,4(p).

The LSBR method consists then in minimizing the follow-
ing expression:

@Y= [TH0) e

-~ b

electrostatic case

magnetostatic case
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where b is the distance between the two lateral electric
walls. It can be shown that f(y) and A(y) can be ex-
pressed as

)= % G,
A= T GOIKY,

with
G,(y)=1/Vbe/™ and B=2u/b.

Before proceeding to the basis function change, it is
interesting to note that the combination of the two previ-
ous equations (electrostatic and magnetostatic cases) yields

Hf )+ Ky T 1GONKLGNI () =0.

n=—0o0

Moreover

if(y)=o0

where L is a linear operator and

L= T+ 4, ¥ 1G,(y)KLG,(y)]

n=-oo

I being the identity operator. -

If L, denotes the truncated operator up to a finite
number N, the problem will consist in minimizing the
following form:

SONEVENIF(2))

where the superscript ¢ denotes the adjoint operator.
We have chosen rectangular pulses as. the new basis
functions 7, defined only over the conductor, such that

Tz{l/\/z7 for y,—8/2< y <
0 ‘ elsewhere.

yp+8/2

Here y,=p-8, and §=W/number of basis functions.
Then f(y) is rewritten as

f(»)=T,(») Y,

The expression to be minimized becomes

CAEDOLDIDIPIPI £ ot

g m n p
(G, (PNHlG (Y ))K,S, Y,

wheirf: S, ; ={G(MIT(y)), and A is a definite positive
matrix. :
In order to avoid the trivial solution Y =0, we impose

the condition
(Y|Y)=1.

The solution is the eigenvector Y corresponding to the
smallest eigenvalue of A4.

Now, we present the different steps in the solution of
our problem concerning the structure of Fig. 5.
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Fig. 5. Shielded structure for the study with the LSBR method.

A. Electrostatic Analysis

The electrostatic potential V" is the solution of Laplace’s

equation:
a2 a?
-+ —— |V=0.
[ ax? 8y2}

The solution is found to be

+ 00

Vi(x,y)=

=00

[ Al Bl 4 Big~1nix] g inby

where i =1,2,3 denotes the different media.
The previous general equation can be written as
+ o0 :
Y MK+ A5G (y) =0

n=—00

“with superscript e indicating the electrostatic case. The full

expression of K¢ is given in the Appendix.
The total charge Q is obtained by integrating the surface
charge density p(y) over the conductor width:

o=/ p(y)dy= ftr-ipZY,pr(y)dya/ng}f.

s ll‘l

The potential 7 can be expressed in terms of the eigenvec-
tor components as

KYeS

Ve E T

By having the charge and potential values, the capacitance
is deduced immediately:

C=,Q/V. ~

' B. Magnetostatic Analysis

The magnetostatic potentlal U is the solution  of

Laplace’s equation:
3?2 92
—+— |U=0.
[ ax% . 3y? }U 0
The solution is found‘ to be 7

Ui(x,y)= Z [C iglBlx 4 Dig=Inix] by,

n=—00
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(b)

Fig. 6. Cross sections of experimental phase shifters.

The general equation can be written as

+ o0

Y [kl ]G, (y) =0

n=—00 .
where the superscript / indicates the magnetostatic case.
The full expression of K/ is given in the Appendix.
Similarly the current I is obtained by integrating the

surface charge density j( ) over the conductor width:

= jmd=[ TR0 d=6ELY.
strip strip p P

The magnetic induction flux ¢ through the (y, z) plane

between the conductor edge and the lateral wall can be

calculated as

b/2
<P=f roH, (0, y) dy
w/2

and the inductance L is determined as

L=o/I.
~In this way, the propagation constant and the character-
istic impedance are determined by the classical transmis-
sion line equations.
The fields can be calculated at the dielectric—ferrite
interface using the eigenvector components in the new
basis.

IV. APPLICATION TO PHASE SHIFTERS

We present here the experimental results concerning two
phase shifter prototypes, realized by using the following
Thomson /CSF ferrites (Fig. 6(a) and (b)):

FERRITE A230 A28

¢ (e=¢€+ je') 16,6 16,6
47 M, (gauss) 2300 2800
4aM,_,. (gauss) 1740 2240

Kz/KO
30

(a)
sl
8 9 10 11 12 GHz
. . __ VARIATIONAL METHOD i
. DEMAGNETIZED FERRITE
LSBR METHOD
ev.—..__ VARIATIONAL METHOD
MAXIMUM POLARISATION OF THE
_..__..._ LSBR METHOD FERRITE
o
55|
(b)
=
a5 -~
8 5 10 n 12GHz
Fig. 7. (a) Normalized propagation constant versus frequency (A230).

(b) Characteristic impedance versus frequency (A230).

A. Propagation Constant and Characteristic Impedance

The two methods have been applied for the design of the
phase shifters, and Figs. 7 and 8 show the excellent agree-
ment between the theoretical results. The maximum differ-
ence between the obtained values is 2 percent for the
characteristic impedance in the case of maximum polariza-
tion, less than 1 percent for that of the demagnetized
structure, and 1 percent for the propagation constant,

The calculation of the microstrip width W corresponding
to a characteristic impedance of 50 Q gives 0.9 mm for the
A230 structure and 0.67 mm for the other one, where the
operating frequency is 10 GHz. Figs. 9(a) and 10(a) illus-
trate the measured SWR in the 8-12 GHz band, where it
is less than 1.2 everywhere (under — 20 dB), except below
9 GHz for the A28 phase shifter, where losses appear in
the low magnetic field zone. The polarization induction is
created by a 2000-turn solenoid around the phase shifter.

B. Phase Shift

The diagrams of Figs. 9(b) and 10(b) show the experi-
mental differential phase shift between the polarized and
demagnetized states as a function of the magnetization
(i.e., the current in the solenoid).
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Fig. 8. (a) Normalized propagation constant versus frequency (A28).
(b) Characteristic impedance versus frequency (A28).

The predicted phase shift is calculated for a saturated
ferrite, below the limit where nonlinear phenomena ap-
pear. This state is characterized by the end of the satura-
tion bend yielding a nearly linear curve, and corresponds,
respectively, to 100 mA and 500 mA through the solenoid
in the A230 and A28 cases. The LSBR method gives
results which are nearer to this definition. However, it is
interesting to note that, in both cases, the theoretical
values are in good agreement with the experimental ones,
around well-defined polarization levels (120 mA and 500
mA for the LSBR method 230 mA and 800 mA for the
variational one).

C. Magnetic Field Distribution

In order to complete the structure characterization, the
magnetic field distribution has been determined by both
methods for the A230 phase shifter. The variations of the
tangential and normal components of H in the dielectric
and at the ferrite—dielectric interface are presented in Fig.
1i(a) and (b). We note that LSBR method gives higher
values of H than the variational one.

703

dB,

0L e L

REFLECTION. LOSSES
Alumina 0,254mm + Ferrite A230 115mm

°/em 30,

25.
: _.F 8GHz
. .- F 9GHz
20 —— . — ..F 10GHz
e~ F1GHZ
154 —- -- =.F 12GHz
THEORICAL:

*:LSBR
+:Variational

PHASE * SHIFT
Alumina 0254mm + Ferrite A230 115mm

(b)
Fig. 9. Composite line: experimental results (A230). .

9 n 12GHz

REFLECTION LOSSES
Aflumina 0254mm + Ferrite A28 08mm

(a)

YCMBO . oo o eaen o

THEORICAL ;

¢:LSBR
+:Variatjonal

00 05 10 15 20 25 A

PHASE SHIFT E
Alumina 0,254mm +Ferrite A28 08mm

(®)
Fig. 10. . Composite line: experimental results (A28).
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Fig. 11. (a) Normal component of H. (b) Tangential component of H.

V. CONCLUSION

A variational method in the spectral domain and the
LSBR method have been applied successfully to the analy-
sis of composite ferrite—dielectric microstrip phase shifters.
In each case, the elaborated computer program has under-
gone several validation tests, and very good agreement has
been observed between theoretical and experimental re-
sults. Moreover, the design of such phase shifters is very
easy, and optimizations can be considered, leading to their
use in two-plane electronically scanned antennas.

APPENDIX

1) Expression of the Fourier Transform of the Green’s
Function over the Strip for the Variational Method:

1
G(0,p)=—
JA)

) e,th( pd,) + e,th( pd,)
E2[51 +e,th( pdy)th( pd,)] + [flth(sz)+ fzth(l’dl)] '
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2) Expression of K in Electrostatic Case for LSBR:

n

with

and

1 S, Nth(|Bn|ds)
€ N+ eth(|Bnlds)]e, + e,th(|Bnidy) th(|Bn|d,)]

K;=

N =e,th(|Bn|d,)+ ¢;th(|Bnld,)

S,=|n|/n.

3) Expression of K" in Magnetostatic Case for LSBR:

S, Nth(|Bnid,) N, + Nyth(|Bn|d,)

= (iBnids)+ h(1Bnlds) Dy + Dyth(|fnidy)

N and S, are the same as above. In addition,

(5]

(o]

(7
(8]

19

(10]

1

12]

[13]

[14]

D1=H0ﬂ|.3n|2
N, = D,-th(|Bn|d,)

_ (B =&*)(Bn)’
2 th||Bni(dy+ d;)]

N, = (p2=k2)(Bn)’— pokBn|Bn|th(|Bn|d,).

— lokBn|Bn|
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